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Abstract—The high performance computing industry is un-
dergoing a period of substantial change. Not least because of
fabrication and lithographic challenges in the manufacturing
of next-generation processors. As such challenges mount, the
industry is looking to generate higher performance from ad-
ditional functionality in the micro-architecture space as well
as a greater emphasis on efficiency in the design of network-
on-chip resources and memory subsystems. Such variation in
design opens opportunities for new entrants in the data center
and server markets where varying compute-to-memory ratios can
present end users with more efficient node designs for particular
workloads.

In this paper we compare the recently released Marvell
ThunderX2 Arm processor - arguably the first high-performance
computing capable Arm design available in the marketplace.
We perform a set of micro-benchmarking and mini-application
evaluation on the ThunderX2 comparing it with Intel’s Haswell
and Skylake Xeon server parts commonly used in contemporary
HPC designs. Our findings show that no one processor performs
the best across all benchmarks, but that the ThunderX2 excels in
areas demanding high memory bandwidth due to the provisioning
of more memory channels in its design. We conclude that the
ThunderX2 is a serious contender in the HPC server segment
and has the potential to offer supercomputing sites with a viable
high-performance alternative to existing designs from established
industry players.

Index Terms—High-Performance Computing, Server, Proces-
sor, Performance, Evaluation

I. INTRODUCTION

Processor and computing architecture designs are going
through a period of unprecedented change. There are multiple
drivers placing pressure on historical approaches that include
the, now well documented, challenges with advanced litho-
graphic nodes and silicon manufacture, as well as changing
dynamics in the computing marketplace towards a greater
use of machine learning and data analytics. In the consumer
market, there are also notable shifts away from the use of
larger powerful desktops towards lightweight tablet and mobile
devices, which help to place pressure on amortizing expensive
fabrication facilities over more expensive units.

The effect of these factors on high-performance comput-
ing (HPC) has the potential to be dramatic. For the past
two decades, supercomputers have typically utilized high-

end commodity processor parts in large numbers to derive
high aggregate system performance, with a near certainty that
advances in lithographic processes correlated to Moore’s Law,
would continue to drive economical production of significantly
faster designs year-upon-year. The situation today is different.
Performance is no longer guaranteed to improve as the rate
of lithographic improvements slow down, and the ability of
high-performance computers to drive new features in processor
cores becomes more challenging. Instead, hardware designers
are marking out large parts of the silicon real estate to
drive sales in alternative markets, shifting toward the use of
very low-level micro-architecture optimizations as a way to
deliver additional performance. Some of these recent designs
include the use of wider vectors for compute throughput,
redesigned cache/memory subsystems and changes in the
design of system-on-chip or multi-processor packages to boost
performance.

While these changes create an interesting period in comput-
ing for the research community, the much greater variation in
processor and micro-architecture designs is creating higher-
levels of complexity for large-scale supercomputing sites,
which must weigh the more varied, and often more specialized
novel features, against existing workloads that may not yet be
ready to run on new hardware, or many not have the fundamen-
tal capability to exploit the novel hardware components being
offered. The much greater number of options, which has been
called the HPC “Cambrian” explosion, is therefore placing real
pressure on system procurement and benchmarking specialists
to navigate the much broader range of components being
offered in order to select the best combination for each sites’
HPC needs.

Recognizing the challenges in these areas and the potential
of the changes to add significant opportunity and technical
risk, the United States Department of Energy (DOE) Na-
tional Nuclear Security Administration (NNSA) launched the
Vanguard program [1] in 2018 to field moderate-scale, next-
generation, prototype computing platforms. The intended users
of these machines are application developers and systems
engineers, giving them the ability to evaluate, typically, off-
roadmap system components for performance and scalability,



ensuring that any future system would meet the robust require-
ments that are placed on the systems that are used within the
national security mission space.

The first system selected for deployment in the Vanguard
program was Astra [2][3] - the first petascale supercomputer
based on Arm processors. While [4] and [5] previously inves-
tigated the potential for Arm processors, Astra was intended
to conduct these activities at a much larger scale. Specifically,
Astra utilizes the ThunderX2 processor developed by Marvell
to be a fully featured, server-class Arm design that can provide
exceptional memory bandwidth while attempting to strike a
more optimized balance between compute and data throughput
requirements.

In this paper, we detail our early benchmarking of Astra’s
Arm-based processor compute nodes using kernels and mini-
applications, comparing our results to those from Intel’s Sky-
lake [6] and Haswell [7][8] server/HPC offerings, extending
the first comparison of Skylake in [9]. The specific contribu-
tions of this paper are as follows:

o Performance Benchmarking of the ThunderX2 Pro-
cessor - we report on our initial experiences bench-
marking the production silicon variants of Marvell’s
ThunderX2 processor used in the first petascale Arm
supercomputer. In particular, this paper is the first to
report on a broad suite of micro-benchmarking results
of typical processor performance bottlenecks, which have
been identified as critical aspects to important classes of
DOE and NNSA/ASC workloads.

o Mini-Application Benchmarking of the ThunderX2
Processor - we include three important DOE mini-
applications — LULESH, XSBench and HPCG - in
the evaluation, showing how relevant high-performance
kernels perform on the platform. While the micro-
benchmarking results are indicative of the mini-
application performance trends, the composition of low-
level operations in the mini-application kernels present a
more complex performance picture.

o Comparison to Intel Skylake and Haswell Server Pro-
cessors - finally, we run the micro-benchmarks and mini-
applications on Intel’s server-class Skylake and Haswell
Xeon processors, comparing them to the performance
achieved on Marvell’s ThunderX2. We describe the sig-
nificantly different design optimizations that have been
employed in each processor and highlight how these may
change benchmark performance. We show that for some
kernels, ThunderX2 provides the highest performance
while for others, the Intel Skylake is the highest per-
former.

The remainder of this paper is laid out as follows: Section II
provides an overview of the systems and processors used for
our benchmarking studies, in particular, we comment on the
different clock frequencies, core counts and cache structures
in each design. Section III presents results from low-level
microbenchmarking of the three processors. In Section IV we
provide results of benchmarking three important DOE mini-

applications and, finally, we conclude our discussion in Section
V.

II. BENCHMARK SYSTEMS
A. Marvell ThunderX2 (Astra)

Astra, the first medium-scale prototype in the Vanguard pro-
gram, is a 2,592 compute-node supercomputer deployed at
Sandia National Laboratories. Each compute node is com-
prised of dual socket 28-core Marvell ThunderX?2 processors;
the block diagram for the processor is shown in Figure 1.
We note that the 28-core design is the same as the 32-core
design but with one ring stop disabled by processor yield.
Processor cores are clocked at 2.0GHz and have the ability
to execute in either 1, 2 or 4-way hardware multi-threading.
For our benchmarking activities, the nodes were configured
for SMT-1 execution as this was the mode provided during
early system benchmarking and evaluation. Each core has
private 32kB L1 data and instruction caches and a private
256kB 8-way associated L2 cache. 1IMB of distributed L3
cache per core (for a total of 28MB) is provided across the
inter-core ring network-on-chip. Each socket provides 64GB
of system memory (for a total of 128GB per node) that
is arranged as 8GB DIMMs for each of the 8 channels of
2666MT/s DDR4 memory. Although beyond the scope of this
initial on-node performance evaluation paper, Astra compute
nodes utilize a Mellanox ConnectX-5 OCP EDR InfiniBand
network interface (100Gb/s) that is organized to provide a
direct link to each socket for more uniform network access
characteristics. For the ThunderX2 compute nodes of Astra,
we utilize RedHat Enterprise Linux 7.6 and, unless noted,
the Arm 19.1 production compiler. For compile flags we
compile each benchmark using the -mcpu=thunderx2t99
and -mtune=thunderx2t 99 architecture tuning flags (as
recommended by Arm and Marvell [10]).

Fig. 1: Cavium ThunderX2 CN99XX Block Diagram

B. Intel Skylake Platinum 8160 (Blake Testbed)

The Skylake Xeon processors used in this study are are
provided by Sandia’s Blake system. Each node provides dual-
socket Xeon Platinum 8160 processors at 2.1GHz. Each socket
contains 24 cores with SMT-2 enabled per core, thus, 96
hardware threads can be used per node. 192GB of 2666MT/s
DDR4 system memory is provided for both sockets (96GB per



socket, spread across 6 memory channels). The processor cores
each have a private L1 and L2 cache of 32kB and 1MB respec-
tively (note that this is a 4x increase in L2 cache size per core
over Haswell). The L1 caches are 8-way set associative, while
the L2 cache is 16-way set associative. A 33MB L3 distributed
cache is provided across the 2D processor mesh. Unless
otherwise noted, we use the Intel 18.1 compiler toolchain with
GCC 4.9.3 compatibility mode enabled, running on RedHat
Enterprise Linux 7.4. For architecture optimization flags, we
use —xcore—avx512 to generate efficient vectorized code
sequences.

C. Intel Haswell E5-2697v3 (Mutrino Testbed)

The Sandia Haswell development system, Mutrino, provides
dual-socket Xeon ES5-2697v3 processors that run at 2.3GHz.
Each processor is comprised of 16-cores with SMT-2 enabled
per core for a total of 64 hardware threads per node. A total
of 128GB of 2133MT/s DDR4 system memory is available
per node (64GB spread across 4 channels per socket). Each
processor core has a private 32kB L1 cache and a private
256kB L2 cache, each with 8-way associativity. Each socket
has a large 40MB L3 cache that is distributed across the ring
bus. Unless otherwise noted, we use the Intel 18.1 compiler
toolchain running on Cray Compute Node Linux. To produce
architecture-optimized code, we use the —xcore—avx2 flag.

III. MICROBENCHMARKING OF THUNDERX?2

In this section of the paper we report on a collection of
basic micro-benchmark results taken from each of the sys-
tems described in Section II. The micro-benchmarks selected
have historically been used as assessments of processor per-
formance boundaries. Typical HPC codes do not typically
perform operations at the same level of intensity as these
micro-benchmarks but nonetheless, our micro-benchmarking
efforts help in our understanding of potential bottlenecks and
expected performance. In order to maintain a uniform bench-
marking environment, our benchmark values are reported as
either an arithmetic or harmonic mean, depending on the
benchmark figure of merit (rates utilize harmonic mean), over
the course of at least ten runs. We randomly select one node
per run to aggregate performance data over a set of compute
nodes, allowing for individual processor variation. For multi-
threaded and MPI-based runs, we pin either a thread or process
to an individual core, as appropriate, to reduce noise and
interference.

A. Memory Bandwidth (STREAM)

One of the most attractive hardware features of the ThunderX?2
processor is the greater number of memory channels available
on the processor (eight per socket as opposed to six on Skylake
and four on Haswell). For applications or kernels, which heav-
ily utilize memory bandwidth, the TX2-based nodes would
therefore provide a significant performance advantage over
the Intel offerings. However, a trend in recent processor
designs has seen peak memory bandwidth outpace the on-
die transport capabilities of the network-on-chip. This allows
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Fig. 2: Benchmarked STREAM Triad memory bandwidth
on dual-socket ThunderX2, Haswell and Skylake nodes
in GB/s; higher is better. All processors operate in SMT-1
mode; problem size is approx 2.2GB.

for memory DIMMs to operate at lower-load levels, providing
more responsive performance, but negating the use of peak
memory bandwidth as a guidance in system acquisitions.

In Figure 2, we present benchmarked memory bandwidth
on the systems using the ubiquitous STREAM benchmark by
McAlpin [11]. Two results are provided for each system -
execution with vectorization enabled and with vectorization
disabled. For the reader’s reference, theoretical peak values for
the ThunderX2, Skylake and Haswell processors are 317GB/s,
238GB/s and 143GB/s respectively.

The first observation of note is that the extra memory chan-
nels on the ThunderX?2 provide the highest memory bandwidth
of all three systems at 230.98GB/s. Although not shown here
due to inclusion of intrinsics, a more aggressive hand-written
version of Triad has exceeded 247GB/s in more recent tests.
The Skylake node provides 218.65GB/s of Triad bandwidth
and the Haswell 110.01GB/s. Skylake is comfortably the most
efficient processor in terms of peak bandwidth at close to 92%,
while the ThunderX2 and Haswell nodes are at around 77%.

Our results show that on Intel systems, the ability of appli-
cation codes to vectorize plays a significant role in achieved
bandwidth with un-vectorized code delivering a maximum of
194GB/s on the Skylake and 83GB/s on the Haswell, reducing
the peak efficiencies to 81% and 58%, respectively. On the
ThunderX2, the difference between vectorized code (using the
Arm NEON instruction set) is approximately 25-27GB/s at
small thread counts and less than 5GB/s at the largest thread
counts. The minor impact that vectorization plays in Triad
on the ThunderX2 and, as will be seen in Section IV, other
applications, could be due to the fact that the NEON SIMD
units are only 128b; half of Haswell and a fourth of Skylake.
However, this is not necessarily a detriment to system design.

From these results we are able to show that the ThunderX2
is a strong choice when workloads demand high memory
bandwidth, as is often the case with HPC-class applications.
Moreover, for applications where vectorization is challenging,
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Fig. 3: Random Memory Access for a Single Socket
using the Multi-Threaded GUP/s Benchmark. Results are
in Giga-Updates per Second, Higher is Better. Problem
Size is 32GB, 32,768 iteration updates performed in
each benchmark set, single iteration updates a random
selection of 64kB of problem data. Standard system page
sizes are used to replicate production HPC environment.

either because of algorithm design or because of the limits
of automatic vectorization in production compilers, the Thun-
derX2 is likely to provide an even greater level of performance.

B. Random Memory Access (GUPs)

While many HPC applications are optimized to reduce the
number of random accesses (since these typically result in poor
performance), they cannot be entirely eliminated in algorithms
that require complex table-value lookups or have complex
control flow. In Figure 3, we present results from running the
GUPs (Gigaupdates per-second) RandomAccess benchmark
from the HPCC benchmark collection [12]. Historically, this
value has been used to evaluate the performance of randomly
reading a datum, performing a logical exclusive-or operation
with itself and writing it back to the memory system, which
replicates randomly-selected read-modify operations over a
large data set. The benchmark is typically bottlenecked by
inefficient memory subsystem design, such as memory latency
and poor TLB implementation.

Although previous studies have shown performance gains by
using additional hardware threads to hide operation pipeline
latency, the results in Figure 3 are gathered using SMT-1 mode
to enable a fair comparison across all of the processors. In
addition, we only present the results from the non-vectorized
execution since compilation of random update kernels does not
typically result in good vector instruction generation and our
benchmarking shows no discernible difference in performance.

The highest performing processor is the Intel Skylake with
the ability to perform almost 0.40GUp/s at peak versus around
0.36GUp/s on ThunderX2 and 0.18GUp/s on Haswell. Neither
Skylake nor ThunderX2 demonstrate linear scaling, instead
each shows significant performance growth at low thread
counts; from 1-8 threads on the TX2 and 1-10 threads on

the Skylake. Haswell has a more consistent performance
delivery with near linear scaling across all thread counts.
We attribute the Skylake’s high performance to its higher
frequency and design of its on chip mesh-based network-on-
chip, which provides much higher path diversity than the ring-
based architectures used on the TX2 and Haswell processors.

C. Per-Core Cache Bandwidth (LMBench [13])

One of the most commonly attempted optimizations for codes
that can utilize small working sets is to implement cache
blocking or data structure optimizations so that accesses can
be performed nearer to the processor, allowing them to benefit
from the higher bandwidth and lower latencies of caches. It
is worth noting that the design of the ThunderX2 memory
subsystem closely resembles that of Intel’s Haswell design,
which can reduce the need to rearchitect cache-blocked code
when porting from one architecture to another. In their Skylake
design, Intel substantially changed the memory subsystem de-
sign of the processor to move capacity from the L3 distributed
cache to the per-core L2 caches. By increasing capacity, Intel
is offering a larger collection of applications the ability to
benefit from cache performance since working set sizes can
now increase from 256kB (as in Haswell and TX2) to 1MB.

Figure 4 shows benchmarked cache bandwidths for all three
processors at small problem sizes (4a) that typically fit within
the L1 cache up to larger (4b), L3-sized, data sets. We present
read and write bandwidths separately as these vary consider-
ably and can significantly change performance if one type of
operation dominates the data access pattern. Haswell has the
fastest per-core read and write bandwidths at around 111GB/s
and 57GB/s - note that Haswell also has the highest clock
frequency allowing it to improve data throughput. Skylake
provides approximately 88GB/s of read-bandwidth from the
L1 as well as 44GB/s of write bandwidth, in keeping with the
near 2:1 ratio also found in Haswell. ThunderX2 provides the
lowest L1 read and write bandwidths at around 46GB/s and
31GB/s, respectively (note the lower disparity between read
and write operations on the TX2 processor).

The longer performance plateau show in Figure 4b for
Skylake reflects the larger capacity L2 cache for each core (the
Haswell and TX?2 data drops much earlier). At large problem
sizes that fit into the L3 distributed caches, all three processors
provide similar bandwidths - the Haswell core provides the
highest bandwidth at 29.8GB/s for reads and 12GB/s for
writes; Skylake provides 25.8GB/s for reads and 16.9GB/s
for writes; and ThunderX2 provides 17.6GB/s for reads and
18GB/s for writes, again, showing lower disparity between
operation types. The result is therefore mixed and heavily
dependent on specific application design and access patterns.
For cache-read dominated workloads, a Haswell processor
will provide the highest performance of a single core. For
write dominated workloads, the data set size is critical to
processor selection. At small input sizes that fit within the L1,
Haswell would provide the highest performance. However, if
the application working set size fits into the Skylake’s larger
L2 but spills from either Haswell or ThunderX2, then the
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Skylake processor core will likely execute fastest. At even
larger input sizes that only fit within the L3, the ThunderX2
may provide the best performance.

D. Double Precision Floating-Point Throughput (DGEMM)

Double precision compute rates have historically been used
as the sizing metric to determine the world’s largest super-
computers. In particular, the bi-annual Top-500 supercomputer
list uses the High-Performance LINPACK benchmark [14] to
determine machine rankings. The emphasis on dense floating-
point matrix-matrix operations, particularly DGEMM, has
driven the development of wider SIMD vector architectures
and the inclusion of more complex floating-point operations in
ISAs, such as fused multiply-accumulate (FMA), to increase
throughput. Intel has been at the forefront of the widening
of SIMD units as a mechanism to substantially increase the
throughput of their Xeon server processors. Haswell contains
dual FMA-capable vector units that are 256-bit wide. In
Skylake, Intel doubled the vector width to 512-bits, thereby
doubling the peak vector unit throughput. ThunderX2 provides
dual 128-bit vector units that execute Arm’s NEON instruction
set. The NEON instructions are much less capable that the
AVX512 instructions found in the Skylake processor, making it
more challenging to generate optimized instruction sequences.

In Figure 5, we present benchmarked performance of large-
scale, threaded DGEMM calls using the double-precision
throughput benchmark from the NERSC8/Crossroads bench-
mark suite [15]. The purpose of this benchmark is to generate
large DGEMM routines and repeatedly time these operations
to obtain accurate floating-point throughput rates. In order to
accurately reflect the maximum performance we utilize vendor
optimized math libraries for the DGEMM routines.

The first observation from the benchmark data is that
the routines from the MKL are a more tiered result curve,
which we typically find is attributed to the matrix size and
decomposition over threads. We believe that the causes of
these tiers come from optimized blocking routines that have
non-linear decision paths causing slightly different optimiza-

tions/algorithms to be used when certain matrix sizes are
executed. The Arm performance libraries on the ThunderX2
have a much smoother and more linear performance curve,
although this is lower than the Intel equivalent. The principal
reason for the differing levels in performance is attributed to
the different vector widths and clock rates on each of the
processors. ThunderX2 has the shortest vector width (0.5 of
Haswell and 0.25 of Skylake) but has a larger core count
at 28 versus 16 on Haswell and 24 on Skylake. As such,
ThunderX?2 is able to achieve roughly the same performance
(396GF/s) as Haswell (379GF/s). The Skylake provides the
highest throughput with a maximum of 784GF/s occurring at
16 threads. ThunderX2 is the most efficient socket at 88.4%
of theoretical peak. Skylake provides 72.9% of its theoretical
peak when calculated using an AVX512 frequency of 1.4GHz
and Haswell provides 66.7% of theoretical peak per socket.
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IV. BENCHMARKING OF MINI-APPLICATIONS

In this section of the paper we report on three miniapps.
Miniapps are, typically, orders of magnitude smaller than
a real application but act as proxies for a key application
performance issue, providing an easy to understand context
to reason about performance issues.

A. LULESH

LULESH is one of the most widely used mini-applications de-
veloped by the US Department of Energy. The code was orig-
inally developed by Lawrence Livermore National Laboratory
to represent challenging hydrodynamics algorithms that are
performed over unstructured meshes [16][17]. Such algorithms
are common in many high-performance computing centers and
are particularly prevalent within the NNSA laboratories. In
the original LULESH specification, the authors state that such
algorithms routinely count in the top ten application codes in
terms of CPU hours utilized [16].

The unstructured nature of LULESH presents challenges for
the design of memory subsystems, not least because operands
are gathered from a fairly limited locale but are done so
sparsely. This makes efficient streaming and vectorization of
the data operations difficult and places additional pressure on
the memory subsystem (typically the L2 caches) to provide
operands quickly. However, due to the difficulty in predicting
memory accesses, the memory system is likely unable to
provide good prefetch support, which can quickly lead to
bottlenecks. During compilation, our experience has been
that many compilers see the indirection being used for data
accesses and will attempt to generate gather/scatter vector
instructions if the hardware is able to support them. For the
purposes of this paper, Haswell and Skylake support gather
instructions but only Skylake provides scatter capabilities in
its instruction set. The NEON units of the ThunderX?2 provide
support for neither, making vectorization cost-models unlikely
to select vector code sequences during compilation.
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Fig. 7: Benchmarked XSBench Figure-of-Merit. Higher
is Better. Problem size is approximately 5.6GB

Figure 6 shows the performance of LULESH running on
all three processors. We present results for all processors
with and without vectorization enabled during compilation.
In these results, Skylake provides the highest performance
at around 10,800 zones/second with vectorization enabled;
Haswell provides a maximum rate of 6,614 zones/second; and
ThunderX2 a maximum of 8,119 zones/second. However, the
differences with and without vectorization are underwhelming
for all of the processors. For both Haswell and ThunderX2,
vectorization makes little difference, between 2-3%; even
for Skylake the difference is only 8-9%. Digging into the
execution metrics, it can quickly be seen that only 3-5% of
the run time is actually vectorized, likely due to the issues
described above. Even then, the vectorized code is only using
a fraction of the available vector width. As such, the perfor-
mance is limited more by the memory subsystem than the
architecture of the vector units, which benefits the ThunderX2.
The ThunderX2 provides a 1.22x speedup over Haswell at 28
cores with both providing roughly equal performance at the 16
core mark. Skylake has steep performance growth from 1 to 16
cores and then a much more modest improvement of around
600 zones/second from 16 to 24 cores. The similarity between
the shape of the Haswell and ThunderX2 performance curve
is likely a reflection of the similar cache sizes and the use of
ring topologies in the die.

B. XSBench

Monte Carlo transport algorithms are useful in a wide variety
of scientific calculations including nuclear reactor design,
medical dosimetry and the simulation of nuclear reactions.
XSBench is a mini-application [18], developed by the Argonne
CESAR Nuclear Reactor simulation codesign project. The
code is designed to model one of the most computationally in-
tensive macroscopic neutron cross-section calculations, which
can account for up to 85% of a full simulation. In keeping with
the philosophy of mini-application design, XSBench removes
less relevant instruction paths and focuses on the essential
performance-relevant aspects of the algorithm used by produc-
tion code. The principle operation being benchmarked is the



TABLE I: Benchmarked Kernel Performance of HPCG (reported in GFLOP/s) with and without native vectorization
enabled. Higher is Better. All cores used per socket in MPI only execution. Total Problem Size 86.5GB

Kernel Skylake Skylake | Haswell | Haswell | ThunderX2 | ThunderX2
(AVX512) | (No Vec) | (AVX2) | (No Vec) (NEON) (No Vec)
DDOT 20.05 30.50 9.87 11.41 20.14 15.96
WAXPBY 16.70 16.88 9.53 9.35 23.51 23.52
SpMV 18.56 17.95 10.22 10.20 34.59 34.70
Multi-Grid 18.29 17.94 10.01 9.89 30.97 31.00
Solve (Total) 18.33 18.04 10.03 9.95 30.66 30.51

look up of cross-section data from nuclide grids — a memory
latency intensive set of indirect accesses to a large collection
of data configured when the application launches. The typical
observed behavior for XSBench is that it places pressure on the
memory subsystem using random memory accesses, which are
heavily dominated by reads, to search through its structures.

Figure 7 shows benchmarked performance of XSBench
on the three selected systems. As in our previous results,
we report with and without vectorization enabled during
compilation. Skylake delivers the highest number of lookups
per second at 9.84M; Haswell is second with 5.48M; and
ThunderX?2 is the poorest performer at 4.75M. For both the
Skylake and Haswell, vectorization improves performance by
almost 20%. On ThunderX?2 the use of NEON results in an
almost negligible performance improvement of 0.05%. Given
the intense read-dominated operations from sparse locations
in memory, the availability of gather instructions on both
Skylake and Haswell provides significant performance gains.
The lack of gather instructions in the much simpler design
of the NEON vector units is a clear detriment to the TX2
performance, requiring all of its cores to match the non-
vectorized performance of Haswell, demonstrating the much
greater efficiency of the Intel processors for this type of
workload.

C. High Performance Conjugate Gradient (HPCG)

The High Performance Conjugate Gradient benchmark
(HPCG) [19][20] is a recently developed benchmark that is
intended to augment the familiar High Performance LINPACK
(HPL) benchmark that defines the ranking of the world’s
“Top 500" supercomputers. HPCG was created to address
some of the criticism that HPL has lost its relevance as
a predictor of application performance on supercomputing
installations. As new algorithms have been developed over
time, many users have seen a growing pressure on memory
subsystem performance rather than raw compute performance,
as evidenced by the two previous miniapps. HPCG therefore
attempts to place a greater emphasis on memory speed as well
as interconnect performance, particularly efficient system-wide
reduction operations. As an on-node benchmark, HPCG places
significant stress on memory bandwidth.

Results for the reference implementation of HPCG on all
three systems are shown in Table I. We present results for
HPCG as performance of each of the principal kernels used
when running on the full system in MPI-only execution mode.
For the sake of brevity, we dispense with scaling curves for

presentation to compact our use of space. The reader will
note the significantly higher performance of the ThunderX2
system, which we attribute to the much greater provision of
memory bandwidth and the higher number of cores available to
drive benchmark execution. For most kernels, the ThunderX?2
provides more than 1.5x the performance of the Intel Skylake
system and 3x the performance of the Intel Haswell system. As
with the GUPS and LULESH results, vectorization provides
only limited benefit for most kernels. The exception, of course,
being the dot-products (DDOT) where vectorization provides
almost 33% higher performance on the TX2 and actually
negatively impacts the performance on the two Intel systems.
The reference implementation does not make use of the restrict
qualifier, which leads most compilers unable to determine if
vectorization is safe. We note that high performance for all sys-
tems can be achieved by using vendor optimized benchmark
implementations [21] as we refer the reader to the Top-500
list for these performance results. These are not compared in
this study in order to ensure we utilize the same algorithms
on all systems.

V. CONCLUSIONS

The processor design industry is undergoing a major period
of change. Part of this change is a much greater degree of
variation in processor and micro-architecture design. This is
both a challenge and an opportunity for many large-scale
supercomputing sites: the challenge comes from having to
more intimately understand complex workloads, even while
they themselves are changing. If there is to be a close
relationship between the hardware purchased and the scientific
software used on them, such a deep knowledge will be critical.
For those sites with rapidly changing workloads, this will be
particularly difficult. For others, there will be an opportunity
to break from contemporary commodity-based designs and
seek greater levels of performance through a closer mapping
between hardware and software. In addition, the rapid pace
of change will open doors in the future into greater levels of
customization as well as more aggressive use of packaging
techniques to improve performance levels.

During this period, the NNSA program must balance the
use of new and novel hardware with an incredibly broad
and diverse application portfolio, arguably one the largest
collection of computing codes anywhere in the world. Change
in a world of millions of lines of source code is without a
doubt one of the most significant challenges in its future HPC
strategy.



The Vanguard program, of which Astra is the first de-
ployment, is an acknowledgment of the current situation.
There is a risk of failing to identify future potential hardware
opportunities if novel approaches are not explored. At the same
time, the use of next-generation systems is itself a risk if codes
cannot adequately utilize the performance they offer, and so
careful analysis must be performed to show areas of strength
and weakness.

In this paper we have described our initial benchmarking
of the Marvell ThunderX2 server-class Arm processor used
in Astra. At the time of writing, Astra was in its initial
shake-out period, and so we argue that the results shown
are a baseline of system performance and these results are
likely to improve in the coming months and years. We have
presented initial benchmarking of a suite of low-level micro-
benchmarks as well as three important DOE mini-applications
that represent important HPC kernels. Our benchmarking
compares the ThunderX2 to Intel’s Haswell and Skylake Xeon
processors - leading contenders for HPC processor selection.
We find, perhaps unsurprisingly, that no single processor
provides the best performance across all codes and that each
design has advantages for our complex workloads. Such an
observation helps to justify our statements on the complex
choices ahead with future hardware purchases. Nonetheless,
the results demonstrate that the ThunderX2 processor, and by
extension the Arm ecosystem, can deliver exceptional levels
of performance for certain codes and are viable candidates
for selection in the next-generation of supercomputing deploy-
ments.
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